APPLICATIONS

CONTACT
尽责尽心
INFORMATION
PRODUCTS
HOME
  • 屠呦呦与青蒿素 Tu & Arteannuin
  • 石油化工创新简史 A Petrochemistry History
  • 芳烃-改善人们生活 Aromatics Improving the Quality of Your Life
  • 百折不饶聚氨酯 Polyurethene: the Strength of Flexibility
  • 百变百丽有机硅 Silicone: the Art of Flow
  • 氯 这玩意儿 Chlorine Things
   
   
     

尽责尽心

  • 强氧化剂的危害
  • 空气的威力
  • 为什么我打不开那个阀门?
  • 氮气的危险及防范
  • 物料错误混装的危害
  • 管帽和堵头-最后的防线
  • 软管破裂泄漏
  • 蒸气云爆炸
  • 危险物料的储存与运输
  • 沸腾液体膨胀蒸气爆炸(BLEVE)
  • 化学品危害性分类与标识
  • 化学品危害性其它标识方法
  • 化学品燃爆反应危害及防范
  • 化学品失控反应危害与防范-失控聚合-苯乙烯
  • 化学品失控反应危害与防范-失控聚合-丙烯酸及酯
  • 化学品遇水反应危害与防范-硅烷
  • 化学品失控反应危害与防范-失控分解-有机过氧化物
  • 工作场所危害与防范-蒸汽
  • 工作场所危害-登高作业
您当前的位置:
    
无组织散逸排放 Fugitive Emmission

Fugitive emissions are emissions of gases or vapors, especially VOC, from pressurized equipment or unpressurized open sources due to leaks and other unintended or irregular releases, mostly from industrial activities. As well as the economic cost of lost commodities, fugitive emissions contribute to air pollution and climate change. In addition to the effects of air toxics, fugitive emissions generate raw materials for photochemical smog, greenhouse effect, and ozone depleting.

无组织散逸排放是指从带压设备或非带压敞口源排放的气体或挥发物,尤其是挥发性有机化合物VOC,原因在于泄漏和其它无意、无规律的泄放,主要还是由工业生产活动造成的。散逸排放除了泄放产品的经济损失外,还造成空气污染和气候变化的进一步恶化。因为无组织排放除了带来空气毒物,还为光化学雾霾、温室效应、臭氧层耗蚀等提供着基础原料。

A detailed inventory of greenhouse gas emissions from upstream oil and gas activities in Canada for the year 2000 estimated that fugitive equipment leaks had a global warming potential equivalent to the release of 17 million metric tonnes of carbon dioxide, or 12 per cent of all greenhouse gases emitted by the sector. Venting of natural gas, flaring, accidental releases and storage losses accounted for an additional 38 per cent.

2000年在加拿大做的一项详细列表统计石油天然气上游开采活动的温室效应气体排放量,估算出其中设备类无组织排放造成的全球变暖指数相当于1700万吨二氧化碳,或相当于整个行业温室效应气体排放的12%。天然气的排空、空燃、意外泄放、存储损耗占了另外38%

瑞典行政当局在90年代对两个年产能分别为500万和1000万吨的炼化企业采用DIAL技术(差分吸收光遥感)实时遥测并跟踪数年。结果显示,其储罐区、生产区、污水处理区的无组织排放总量分别达到每年1200014000吨以上。

2005年在欧洲进行的一项试点研究采用差分吸收光遥感法 (DIAL),在距生产设施几百米距离上遥测大气中烃类(碳氢化合物)浓度分布,结果显示,即使经过十多年的提升、改造,采用尽可能先进的技术和措施,炼化厂厂域内无组织排放量仍可达到炼化企业产量的0.17%

据报道,中国年炼油能力已超过7亿吨,产能利用率约70%。国内500万吨/年以上规模的炼厂有40余座;到2012年底,中石化炼油能力在1000万吨/年以上的企业共有11家。

  

可见光与红外线摄像机分别拍摄的储罐散逸排放情况


Fugitive emissions present other risks and hazards. Emissions of volatile organic compounds VOC such as benzene from oil refineries and chemical plants pose a long term health risk to workers and local communities.
无组织排放也带来其它风险和危害。挥发性有机化合物VOC,如炼化厂和化工厂挥发的苯,对工人和周遍社区散布着长期的健康风险。


Leaks, or Fugitive Emissions, from pressurized process equipment generally occur through valves, pipe connections, seals, pumps, mechanical seals, loading and unloading, storage tanks and vessels, road and rail tankers, and related equipment, such as vent-valves and relief-valves. Fugitive emissions also occur at evaporative sources such as waste water treatment ponds, open-end pipes, hoses, drums, containers, tanks, and tankers etc. These are generally scattered through tank farms, processing zones, loading & unloading bays, and waste storage & treatment area. Because of the huge number of potential leak sources at large industrial facilities and the difficulties in detecting and repairing such leaks, fugitive emissions can be a significant proportion of total emissions. Though the quantities of leaked gases may be small, gases, or VOC, that have serious health or environmental impacts can cause a significant problem. In situations where large amounts of flammable liquids and gases are contained under pressure, leaks also increase the risk of fire and explosion.

带压工艺设备的泄漏,亦即无组织排放,通常存在于阀、管道接口、密封件、泵、机械密封、装卸操作、储惯、容器、公路槽车、铁路槽车,及其相关设备,比如呼吸阀和泄压阀。无组织排放也存在于常压敞口源,比如污水处理池、敞口管道、装卸臂、连接软管、敞口圆桶、敞口容器、敞口储罐、敞口罐车等。这些无组织排放源基本分布在原料储罐区、成品储罐区、生产工艺区、装卸操作区、污水储放处理区。除了密闭带压系统泄漏、敞口常压系统排放,操作方式、人为疏忽也产生大量的无组织排放。由于大型工业企业潜在泄放点数量巨大,且检测检修这些泄放点困难重重,无组织排放占了总排放量的显著比例。尽管每个点的泄放物数量可能很小,但这些气体,亦即挥发性有机化合物,对健康和环境有着严重影响,可以造成严重的后果。特别当巨量可燃液体或气体在压力下储存,极小的泄放也增加了火灾和爆炸风险。


Because of the technical difficulties and costs of detecting and quantifying actual fugitive emissions at a site or facility, and the variability and intermittent nature of emission flow rates, emissions of volatile organic compounds (VOC) historically were only roughly calculated either as a figure based on throughput, or on the number of certain process-units in the plant multiplied by certain theoretical emission data. And the bottom-up estimates based on standard emission factors are generally used for annual reporting purposes.

由于在现场或设施中探测并确定实际的无组织排放量所存在的技术和成本障碍,历来,挥发性有机化合物的排放量仅通过产量,或通过某些工艺设备单元的数目乘以某些理论排放数据来粗略估算。另外,采用标准排放因子自下而上估算来获取年度上报的排放量。

Leaking / Non-Leaking Emission Factors

Emission Factor method requires components be screened using the EPA Method 21 for VOC leaks, which sorts out the major contributors of fugitive sources. Components whose reading show above 10,000 ppmv are multiplied by a leaking emission factor and which are less are multiplied by a non-leaking emission factor. The equation for estimating fugitive emission is given by:

Total Emission = [(Number of Components)* (Emission Factor)1] + [(Number of Components)2* (Emission Factor)2]

The emission factors are given in the following table.

排放因子估算法需要先按照美国环保暑EPA认定的21号方法Method 21筛查各种设备部件的VOC泄放率,并对无组织排放的主要祸首排序。泄放率大于10000ppmv的设备部件个数,乘以一个泄放排放因子,低于的则乘以非泄放排放因子。估算无组织排放量的公式为,

总排放量 = 泄放设备个数1 x 排放因子1 +泄放设备个数12x 排放因子2 …

 

Leaking and Non Leaking Average Fugitive Emission factors For The Synthetic Organic Chemicals Manufacturing Industry (SOCMI)

合成有机化学品生产行业 SOCMI 泄放 / 非泄放平均无组织排放因子

Fugitive Emission Source 散逸排放源

Leaking 逸漏 (>10000 ppm)

Emission Factor排放因子 (lb磅/小时hr)

Non Leaking 逸漏 (<10000ppm)

Emission Factor 排放因子 (lb磅/小时hr)
泵密封Pump Seals  -  Light Liquids 轻质液体
0.96
0.026
泵密封Pump Seals  -  Heavy Liquids 重质液体
0.85
0.030
Valves ( in-line)  -  Gas 气体
0.099
0.0011
Valves ( in-line)  -  Light Liquid 轻质液体
0.19
0.0038
Valves ( in-line)  -  Heavy Liquid 重炙液体
0.00051
0.00051
安全泄放阀Gas-Safety Relief Valves
3.72
0.0098
敞口管线Open-Ended Lines
0.0263
0.0033
法兰Flanges
0.083
0.00013
取样接口Sampling Connections
- -
压缩机密封Compressor Seals
3.54
0.20



作为“固定排放源”
厂域内物料装卸区也是无组织排放的重要来源。

厂域内物料储罐区是无组织排放的主要来源,其排放量可能超过生产工艺区。储罐进料时,其内部的空气或物料挥发的饱和蒸气需要通过呼吸阀排出。日照高温下,罐内物料挥发加剧、罐内压力上升到一定程度,罐顶呼吸阀打开,部分饱和蒸气排出。夜间或温度下降时,罐内压力下降,罐顶呼吸阀反向打开,空气进入,平衡储罐内压。这种“呼吸”循环,反复频繁发生,使物料不断挥发、排出、损耗;使空气、水气不断进入储罐,形成潜在爆炸性气氛;更持续地产生着无组织排放。尽责尽心的企业应该、也完全可以对正压下挥发排出物进行回收液化 (Vapour Recovery),提供氮气等惰性气体对罐内负压进行补偿。

无论是海运、河运、铁路罐车、公路罐车、集装箱罐ISO-TANK,还是吨桶IBC、铁桶、塑料桶等,装卸过程中输运物料的装卸臂、连接软管都需要采用法兰、螺纹、压插式、快锁式、快接式等接头形式进行临时连接。除了在装卸输料过程中的静态泄漏外,在装卸完毕、脱离连接时,接口敞开处剩余物料的滴漏、泄漏更为严重,且更为频繁。


在装载物料时,为保持内外压力平衡,舱内、车内、罐内、桶内的空气、挥发物料被直排大气,造成大量的无组织排放。当然,有些物料为易液化气体,需带压储运的,本来就必须且已经采用气相平衡连接管,将挥发物料引导回原储罐,以达到气相平衡。油罐车装载汽油,已随世界趋势,逐步采用了油气回收管,但仍未完全实施;而铁路罐车、航运船舶装载汽油则完全没有采用油气回收,基本都是直排大气。更大量的液体化学品常压、甚或加压装载的,则仍基本未采用气相回收连接管,或仅采用半敞口的回收方式。


对挥发物采用气相回收/平衡管予以收集处理或循环平衡,对液相、气相连接采用干式脱离阀消除剩余物料的滴漏、泄漏,其相关技术和产品在国外都已成熟使用二三十年,并已成为减少物料装卸操作无组织排放的普遍标准。国内业界惟经此途,才能真正提升石化、化工产业的健康安全环保水准,真正造福人类社会。

作为"移动排放源“的公路罐车、铁路罐车、散装液体船舶等移动储罐都设置有呼吸阀,除了在灌装物料时排出罐内、舱内空气、挥发气形成无组织排放外,在日照高温下,罐内物料挥发加剧、罐内压力上升到一定程度,罐顶呼吸阀打开,部分饱和蒸气排出,产生频繁的无组织排放物。此外,罐顶还设置有紧急泄放阀,当罐体受热、遇火,罐内压力急剧上升时,可大量释放罐内压力,避免罐体爆炸。

对于呼吸阀产生的无组织排放,可根据物料特性选用承压高一或二级的罐体,相应提高呼吸阀的动作上限,减少其受压泄放频率,从而略微减少从由呼吸阀带来的无组织排放。


To minimize and control leaks at process facilities operators carry out regular leak detection and repair activities. Routine inspections of process equipment with gas detectors can be used to identify leaks and estimate the leak rate in order to decide on appropriate corrective action. Proper routine maintenance of equipment reduces the likelihood of leaks.
为了减少和控制工艺设施上的泄放,生产团队会定期进行检漏和维修。可以用气体探测仪进行工艺设备的例行检查,并估算泄放率以决定采取适当的整改措施。恰当的设备维护可以减少泄放发生率。


New technologies have soon revolutionized the detection and monitoring of fugitive emissions. One technology, known as Differential Absorption Lidar (DIAL), can be used to remotely measure concentration profiles of hydrocarbons in the atmosphere up to several hundred meters from a facility. DIAL has been used for refinery surveys in Europe for over 15 years. A pilot study carried out in 2005 using DIAL found that actual emissions at a refinery were 10 to 20 times greater than the amount estimated using standard emission factors. The fugitive emissions were equivalent to 0.17% of the refinery throughput.

新技术很快就已经革新了对无组织排放的探测和监控。其中之一,称为差分吸收光遥感法 (DIAL),可被用作在距生产设施几百米距离上遥测大气中烃类(碳氢化合物)浓度分布。DIAL在欧洲用于炼化企业调查已有十五年以上。2005年进行的一项试点研究发现炼化厂的实际排放量比用标准排放因子估算的量大1020倍。无组织排放量相当于炼化企业产量的0.17%


An identified problem with emission factor calculations is that they assume all equipment is operating as designed, they do not include some major release areas, and the leak detection and repair (LDAR) programs typically do not measure tanks and difficult to access plant areas. Whole plant measurements can identify problem areas that are not being monitored and allow them to be addressed. Direct measurement of plant emissions is a way to identify areas for improvement, not necessarily a replacement for emission factor estimations. The issue should not be framed in an either/or fashion.

排放因子计算法已知的问题在于,其假定所有设备都按设计运行,且不包括某些主要的泄放区域 泄漏检测修复LDAR工作一般不检测储罐,以及难以进入的工厂区域。全厂域监测可以发现尚未监控的问题区域,并加以指正。直接测量厂域泄放是识别待改进领域的一个方法,但不一定可以取代排放因子估算法。这个问题不能以非此即彼的方式看待。


The DIAL technique has been used extensively in Europe and more recently in Canada. As currently configured it uses both ultraviolet (UV) and infrared (IR) lasers to measure criteria pollutants (NOx, SO2, and O3) and light aromatic (benzene, toulene, ethylbenzene, and xylene) in the UV, and methane and total hydrocarbon plumes in the IR. DIAL is capable of providing a 2-dimensional contour of concentrations across a scanning plane. By combining this concentration contour with separately obtained wind speeds, a contaminant flux can be calculated. The DIAL system has been validated in European studies for hydrocarbon emissions. Estimated fluxes obtained by the DIAL system are generally assumed to be conservative.

DIAL技术在欧洲已被广泛应用,近来,在加拿大也逐步推广。按目前配置,使用紫外与红外激光,用紫外谱段测量关键污染物(氮氧NOx, 硫化物SO2, 和臭氧O3),以及轻烃 (苯、甲苯、乙苯和二甲苯),用红外测量甲烷及总烃。DIAL能够生成所扫描平面上两维浓度分布图。通过综合此浓度分布图及另行获取的风速值,可以计算污染流。DIAL系统在欧洲研究中已验证可用于烃类排放。通过DIAL系统获得的污染流估算值,一般认为还比较偏保守。


Portable gas leak imaging cameras are also a new technology that can be used to improve leak detection and repair, leading to reduced fugitive emissions. The cameras use infrared imaging technology to produce video images in which invisible gases escaping from leak sources can be clearly identified.

便携式气体泄漏成像仪也是一项新的技术,可用于改进泄漏检测及维修,有助于减少无组织排放。成像仪采用红外成像技术产生视频图象,使泄漏点无形的气体逸漏一目了然。


The camera has been very effective in locating large hydrocarbon releases from hard to access places. It does not detect all chemicals, nor does it speciate or quantify them. Releases under 500 ppm are generally not detectable. The camera can be combined with a passive FTIR system that together provide a visual of where the release originated as well as its chemical composition and concentrations.

成像仪用于确定难以进入区域的超量烃类泄漏很有效率。但其无法探测所有种类的化学品,也不能区分或对化学品泄放定量。小于500ppm的泄漏一般难以测得。成像仪如果与被动式傅利叶变换红外仪(FTIR)协同使用,就可以既判定泄漏源位置,又确定泄漏成分及浓度。

 

By the late 1990s, the U.S. Environmental Protection Agency determined refineries were under-reporting emissions by a significant amount, thus indicating that LDAR programs were not achieving the desired results. As such, a need was identified for enhanced programs that proactively seek out and eliminate leaks. Between 1998 and 2008, non-compliant facilities were required to institute formal LDAR programs with dedicated management. Today they are required to implement enhanced LDAR programs that call for the use of certified low-leak valves and sealing technologies.

1990年代后期,美国环保暑EPA判定炼化企业显著地低报了无组织排放量,表明泄漏探测检修LDAR项目没有取得期望的结果。基于此,已经认识到需要引入加强型项目更主动地寻找并消除泄放。19982008年间,要求未达标厂区建立配备专职管理的LDAR项目。目前,还要求它们实施加强型LDAR项目,要求采用经认证的低泄阀门和密封技术。


Monitoring requires the use of Method 21, with a toxic vapor analyzer and data logger, and varies with the type of equipment – monthly for pumps and agitators, quarterly for valves and closure devices on open-ended lines, and annually for piping and equipment connectors. Levels of leakage requiring remedial action also vary – 250 PPM for valves, closure devices and connectors, 500 PPM for pumps, and 2,000 PPM for agitators. To quickly detect large leaks well in excess of allowable levels, the EPA adopted the Alternative Work Practice, which employs optical imaging technology such as handheld infrared cameras that allow users to see fugitive emissions. However, this technology does not quantify leaks, so annual Method 21 surveys are still required.

要求采用21号方法Method21进行监控,采用气体检漏仪和数据记录仪,按不同设备种类进行 泵和搅拌器,每月检测;阀和管线盲板,每季检测;管线和设备接口,每年检测。要求安排补救措施的最低泄漏量值也各为不同 阀、盲板、接口,为250ppm;泵为500ppm,搅拌器为2000ppm。为快速侦测大的泄漏点以防其严重超标,EPA允许替代工作法,即采用光学成像技术比如手持式红外成像仪,以便用户直观无组织排放点。但,此技术不能确定泄漏量,21号方法Method21巡检还是需要的。


Initial attempts to repair such leaks must be made within five days of detection, and final attempts within 15 days. If a component cannot be immediately repaired or removed from service, it may be put on a delay-of-repair list subject to EPA inspections.

对如此发现的泄漏点的首次检修必须在五日内进行,末次必须在十五日内完成。如果设备部件不能立即修理或从生产流程中撤除,可以记入缓修清单,以备EPA检查。

 

Equipment Factors

As noted, Enhanced LDAR programs mandate equipment upgrades, replacement and improvement, and also require the use of certified low-leak valves and sealing technologies. With these requirements comes a dramatic reduction in acceptable emission levels from 500 PPM under conventional LDAR to 100 PPM under Enhanced LDAR.

如前所述,加强型泄漏检测维修项目LDAR强制要求设备升级、更换和改进,其也要求采用低泄阀门和密封技术。伴随这些要求的还有可允许排放量从常规LDAR中的500ppm量级大幅降低到加强型LDAR规定的100ppm


With the EPA estimating 60% of fugitive emissions from pipe networks being attributed to valves, emissions control products have become a primary focus for valve and valve packing manufacturers. Recent consent decrees are requiring emission limits for valves and packing to remain below 100 ppm for five years.

基于EPA的估计,密闭管路的60%无组织排放来源于阀门,减排型产品就成为阀门及阀门盘根制造商的基本着眼点。最新的法规要求,阀门及盘根的泄放上限需在五年内保持低于100ppm


The terms we must all become very familiar with are “Certified Low-Leaking Valves” and “Certified Low-Leaking Valve Packing Technology” as defined by the EPA in many consent decrees.  And most recently the term “Low E Technology” has been added to this list. These definitions not only define performance parameters, but, require a written guarantee to be provided by the valve manufacturers and packing manufacturers, that the valve or packing will not leak above 100 ppm for five years;.

人们需要尽量熟悉的术语,是EPA在很多法规指令所定义的“获证低泄阀门”和“获证阀门盘根技术”。最近,另一术语,“低泄放技术”,也加入这一名单。这些定义不仅指定了性能参数,还要求阀门及盘根制造商出具书面质保证明,确认阀门或盘根泄放率在五年内不高于100ppm


New “Low E Technology” includes the above with the added requirement that the manufacturer has test documentation based on accepted engineering practices that documents life cycle and emissions performance.

最近的“低泄放技术”则在上述基础上增加要求制造商出具按公认的技术方法获得的测试文件,详列产品的循环使用寿命及泄放性能。


Enhanced LDAR calls for valve stem packings leaking in excess of 250 PPM to be replaced with low-leak technology within 30 days or at the next scheduled maintenance outage. If leaking between 100 PPM and 250 PPM, they must be repaired or repacked annually per a set of equations.

加强型LDAR要求阀杆盘根泄漏率大于250ppm者,在30天内以低泄放技术予以更换,或者下次计划停车检修时进行。如果泄放率在100250ppm,则必须按给定的减排公式逐年修理或维护。


Enhanced LDAR programs also address leaking flanged, threaded, compression, cam-lock and quick-connect connectors. These components do not require warranties and test reports, but like valves are subject to repair and replacement. Connectors found to be leaking at or above 250 PPM must be brought under 250 PPM within 30 days of detection.

加强型LDAR项目也针对法兰、螺纹、压插式、快锁式、快接式等接头的泄漏。这些器件不要求保证书和测试报告,但与阀门一样也需要维护和更换。接头泄漏量一旦发现大于或等于250ppm,需在发现后30天内更换。



Science for a Better Life
Inconvenient Truth
Health
Safety
Environment
Technical & Training
Trade & Exchange