APPLICATIONS

CONTACT
尽责尽心
INFORMATION
PRODUCTS
HOME
  • 屠呦呦与青蒿素 Tu & Arteannuin
  • 石油化工创新简史 A Petrochemistry History
  • 芳烃-改善人们生活 Aromatics Improving the Quality of Your Life
  • 百折不饶聚氨酯 Polyurethene: the Strength of Flexibility
  • 百变百丽有机硅 Silicone: the Art of Flow
  • 氯 这玩意儿 Chlorine Things
   
   
     

尽责尽心

  • 强氧化剂的危害
  • 空气的威力
  • 为什么我打不开那个阀门?
  • 氮气的危险及防范
  • 物料错误混装的危害
  • 管帽和堵头-最后的防线
  • 软管破裂泄漏
  • 蒸气云爆炸
  • 危险物料的储存与运输
  • 沸腾液体膨胀蒸气爆炸(BLEVE)
  • 化学品危害性分类与标识
  • 化学品危害性其它标识方法
  • 化学品燃爆反应危害及防范
  • 化学品失控反应危害与防范-失控聚合-苯乙烯
  • 化学品失控反应危害与防范-失控聚合-丙烯酸及酯
  • 化学品遇水反应危害与防范-硅烷
  • 化学品失控反应危害与防范-失控分解-有机过氧化物
  • 工作场所危害与防范-蒸汽
  • 工作场所危害-登高作业
您当前的位置:
    
空气毒物HAP 挥发性有机物VOC 温室效应气体GHG

Hazardous Environment Pollutants
Industrial emissions and Fugitive emissions bring with not only hazardous air pollutants (HAP), that is toxics in air, but hazardous environment pollutants, such as Volatile organic compounds (VOC) and Greenhouse Gas (GHG), that are lethal to the environment.

工业排放和无组织排放不仅带来有害空气污染物HAP,亦即空气毒物,也造成有害环境污染物,如挥发性有机化合物VOC和温室气体GHG,对环境造成致命影响。


Fugitive emissions are invisibly but substantially leaking into the atmosphere from the entire flow of production, storage and transportation processes of materials originally intended for the well-being of human.

无组织排放物隐形而又实实在在地从物料生产、储存、运输的整个物流链泄漏到大气中,而这些物料本来应该是用于造福人类的。


"Volatile organic compounds (VOC)" means any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions. (EPA 1992)

Photochemical reactions produce smog, which is a mixture of pollutants that are formed when nitrogen oxides and volatile organic compounds (VOCs) react to sunlight, creating a brown haze above cities. Smog reduces visibility and contains oxidants, such as ozone (O3), that cause respiratory problems, eye irritation and damage to plants. It is a mixture of variable amounts of ozone, reactive hydrocarbons VOC, nitrogen oxide (NO), nitrogen dioxide (NO2), aldehydes, peroxyacetyle nitrate (PAN) and other components.

The other source of smog, or classic smog, consists primarily of a mixture of sulfur dioxide and particulate matter (i.e., "soot") usually derived from burning coal, occurs mostly during cold winter days. In addition, sand storm and dust contribute heavily to particular matters in smog.

“挥发性有机化合物VOC”是指

各类能在大气中参与光化学反应的碳的合成物 一氧化碳、二氧化碳、碳酸、金属碳化物或碳酸盐、碳酸铵等除外。美国EPA (1992)


20 下,饱和蒸气压大于0.01MPa的所有有机物 – 欧盟EU



光化学反应产生污霾,即为VOC与氮氧化物NOX – 主要来自燃油 在日照下反应产生的污染物混合体,在城市上空形成一层棕色污霾。污霾降低能见度,含有氧化物,比如臭氧,其能引发呼吸困难、刺激眼睛、损害植物。污霾实际含有程度不同的臭氧、活性烃类(碳氢化合物VOC)、一氧化氮NO、二氧化氮NO2、醛类、硝酸盐(PAN)及其它组分。


污霾的另一来源,或称传统来源,则主要含有二氧化硫及颗粒物(亦即煤烟),主要是冬季燃煤。硫化物首先是以气相存在的。而跟踪研究显示,上述氮氧化合物能造成空气中气相硫化物聚集为固态硫酸盐微粒,构成PM2.5PM10等污霾成分。因而,氮氧化物又可以是气相硫化物固态化颗粒化的催化物质。

此外,扬沙和扬尘也给污霾提供了大量颗粒物。

无组织排放物VOC、燃油燃煤释放的NOXSOX、光化学反应下产生的臭氧,相互作用,相互促进,可以形成光化学反应棕色污霾;不同来源的污染物加剧反应、固态化颗粒化,可形成PM2.5等污霾颗粒物;扬沙、扬尘,则更直接地加剧了污霾固体颗粒物含量。

The two major primary pollutants, nitrogen oxides and VOCs, combine to change in sunlight in a series of chemical reactions, to create what are known as secondary pollutants.

The secondary pollutant that causes the most concern is the ozone that forms at ground level. While ozone is produced naturally in the upper atmosphere, it is a dangerous substance when found at ground level. Many other hazardous substances are also formed, such as peroxy-acetyl nitrate (PAN).

两类主要的一级污染物,氮氧化物和VOC,在日照下结合并产生一系列化学反应,进而产生各类二级污染物。

二级污染物中最令人担忧的是地表形成的臭氧。臭氧在高层大气能自然形成,但在地表则是一种危险物质。地表臭氧不仅对健康有害,还作为强氧化物参与并加速了光化学反应,从而促进生成更多的大气污染物。其它还有很多危害物质形成,例如,过氧硝酸乙酰酯 (硝酸盐PAN)


Nitrogen dioxide (NO2), mainly from the combustion of fossil fuels, particularly in power stations and motor vehicles, can be broken down by sunlight to form nitric oxide (NO) and an oxygen radical (O). Oxygen radicals can then react with atmospheric oxygen (O2) to form ozone (O3). Ozone is consumed by nitric oxide to produce nitrogen dioxide and oxygen. This is a continual cycle that leads only to a temporary increase in net ozone production.

To create photochemical smog on the scale observed in many cities around the globe, the process must include Volatile organic compounds (VOC's). VOC's react with hydroxide in the atmosphere to create water and a reactive VOC molecule. The reactive VOC can then bind with an oxygen molecule to create an oxidized VOC. Oxygenated organic and inorganic compounds (ROx) react with nitric oxide to produce more nitrogen oxides. When VOCs are present, nitric oxide and nitrogen dioxide are consumed more quickly, allowing the build-up of ground level ozone.

Harmful products, such as PAN, are also produced by reactions of nitrogen dioxide with various hydrocarbons (R), which are compounds made from carbon, hydrogen and other substances. The main source of these hydrocarbons is the VOCs.

电厂、车辆燃烧化石燃料产生的二氧化氮经日照降解为一氧化氮与游离氧。氧离子与空气中氧气结合形成臭氧。臭氧又能与一氧化氮结合产生二氧化氮和氧气。这个连续循环还只能导致臭氧量暂时的涨落。

要产生全球众多城市出现的大范围的光化学污雾,其过程必定包含挥发性有机化合物VOCVOC与大气中氢氧根反应生成水分子和活性VOC分子;活性VOC分子再被氧气所氧化。有机和无机化合物的氧化物ROx与一氧化氮NO反应,则产生更多的二氧化氮。当VOC存在时,一氧化氮NO、二氧化氮更快反应,从而积累更多地表臭氧。

各类有害物,例如PAN,也是二氧化氮与各类烃R,即碳氢化合物,反应生成。这些碳氢化合物的主要来源就是VOC

 

In early 90’s, the Photochemical Ozone Creating Potential (POCP) was introduced and the subsequent modeling found that the maximum ozone difference and the 96-hour average ozone concentration gave the most consistent POCP values. On a 96-hour average, ethene and acrolein were found to be very efficient ozone producers, followed by higher alkenes, aromatics, alkanes, and ethers. Alcohols and ketones were found to be weaker ozone producers.

90年代初,光化学臭氧产生指数(POCP)被提出,随后的模型分析发现最大臭氧差异及96小时臭氧浓度能表征最恒定的POCP值。96小时平均下,乙烯和丙烯醛被发现是最有效的臭氧促成物,其次有烯烃、芳烃、烷烃、和醚类。醇类和酮类的臭氧产生率则略低。


Greenhouse Gas (GHG) resulting from the direct release to the atmosphere of GHG compounds from various types of equipment and processes are fugitive emissions.

温室效应气体GHG从各类设备和工艺流程中直接泄放到大气成为无组织排放


The rapid expansion of natural gas development has been a double-edged sword. While natural gas supporters are quick to point out its economic benefits and green attributes - natural gas produces roughly half the carbon dioxide emissions of coal during combustion - this isn’t the whole story. Natural gas comes with environmental consequences, including risks to air and water quality.

天然气开发的高速发展已经成为一把双刃剑。一方面,天然气支持者能容易地列举其经济效益和绿色贡献 天然气燃烧过程只产生燃煤一半的二氧化碳 但这不是故事的全部。天然气也有环境影响,包括空气和水体风险。


One risk is “fugitive methane emissions” potent greenhouse gases that escape into the atmosphere throughout the natural gas development process – from extraction, processing, to transportation, unloading, storage and refueling. This methane - which is 25 times stronger than carbon dioxide over a 100-year time period and 72 times stronger over a 20-year timeframe - contributes to global warming and undercuts the climate advantage that cleaner-burning natural gas has over coal and diesel.

风险之一就是“无组织甲烷排放”强效温室效应气体从天然气开发链各个环节逸漏至大气 从开采、加工、运输、卸运、储存到加注。这部分甲烷 其温室效应在100年跨度上比二氧化碳强25倍,20年跨度上强72 造成全球变暖,抵消了其作为比煤和油清洁的能源对气候产生的益处。


Recent studies estimate U.S. leakage rates in the range of 2 - 3 percent of total production, with some published estimates as high as 7 percent. To put that in perspective, at a 2 percent leakage rate, more than 6 million metric tons of methane escape into the atmosphere in one year--an amount equivalent to the annual emissions of roughly 120 million cars. In fact, 6.9 MMt of methane is equivalent in impact to 172 MMt of CO2 over a 100-year time horizon. That’s greater than all the direct and indirect GHG emissions from iron and steel, cement, and aluminum manufacturing combined.

近期研究估算美国的逸漏率占总产量的2-3%量级,其它一些发表的估算则达7%。从这个角度看,仅以2%的逸漏率,每年就有超过6百万吨甲烷逸漏至大气 相当于大约1.2亿辆轿车的排放量。实际上,在100年跨度上,六百九十万吨甲烷相当于1.72亿吨二氧化碳的温室效应。这大于整个钢铁、水泥、铝行业相加产生的直接或间接温室气体排放量。


Historically, air conditioning and refrigeration equipment utilized various Ozone Depleting Substances (ODSs), primarily chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). However, in accordance with the Montreal Protocol, these ODSs are being phased out of manufacture and use in the world.

Hydrofluorocarbons (HFCs) and, to a lesser extent, perfluorocarbons (PFCs) are used as substitutes for the regulated ODSs. In addition, some air conditioning and refrigeration systems use non-halogenated refrigerants such as ammonia, carbon dioxide (CO2), propane, or isobutane. Also, some fire suppression equipment, which historically used ozone-depleting halons, use carbon dioxide (CO2), inert gases, and other substances.

Emissions from the refrigeration and air conditioning sector result from the manufacturing process, from leakage and service over the operational life of the equipment, and from disposal at the end of the useful life of the equipment. These gases have 100-year global warming potentials (GWPs), which are typically greater than 1,000 times that of CO2, so their potential impact on climate change can be significant. By the same token, any reductions of these gases can have a large potential benefit.

历史上,空调和制冷设备都使用过各种臭氧耗蚀物质ODS,主要为氯氟碳化物CFC和氯氟碳氢化物HCFC。而根据蒙特利尔公约,这类臭氧耗蚀物质ODS在全球范围正退出生产和使用领域。

氟代碳氢化物HFC,以及总量较少的全氟碳化物PFC已用于替代受控的ODS。此外,部分空调和制冷系统也采用非卤代制冷剂,如液氨、二氧化碳、丙烷或异丙烷等。此外,有些消防设备,历史上采用臭氧耗蚀性卤代烃的,也改用了二氧化碳、惰性气体或其它物质。

制冷空调行业生产、运行、保养、处置各类设备及日常泄漏都会产生排放。这些泄放物质在100年跨度的全球变暖指数GWP,都可达二氧化碳的1000倍以上,所以,其对气候变化的潜在影响是显著的。


Global Warming Potentials
全球变暖指数 GWP (GWP值按气候变化政府间小组2007年第四次评估报告)
*100-year GWPs from Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007)


Common Name 通用名称 Formula分子式
GWP*
Carbon dioxide 二氧化碳
CO2
1
Methane 甲烷
CH4
25
Nitrous oxide 氮氧化物
N2O
298
Sulfur hexafluoride 六氟化硫
SF6
22,800
Nitrogen trifluoride 三氟化氮
NF3
17,200
HFC-23
CHF3
14,800
HFC-32
CH2F2
675
HFC-125
C2HF5
3,500
HFC-134
CHF2CHF2
1,100
HFC-134a
C2H2F4
1,430
PFC-14
CF4
7,390
PFC-116
C2F6
12,200
PFC-218
C3F8
8,830
PFC-318
c-C4F8
10,300




































Science for a Better Life
Inconvenient Truth
Health
Safety
Environment
Technical & Training
Trade & Exchange